A-67 ## In situ Characterization of delta-Bi₂O₃ Stabilized by Epitaxial Growth on Single Crystal Oxide Substrates D. L. Proffit^{1, 2}, G.-R. Bai¹, D. D. Fong¹, T. T. Fister¹, S. O. Hruszkewycz¹, M. J. Highland^{1, 3}, P. M. Baldo¹, P. H. Fuoss¹, T. O. Mason², and J. A. Eastman¹ ¹Materials Science Division, Argonne National Laboratory, Argonne, IL 60439 The cubic phase of Bi_2O_3 , delta- Bi_2O_3 , has the largest ionic conductivity of any oxide material, but is stable only from 725°C to 825°C. We observe that the delta- Bi_2O_3 phase is stabilized to room temperature by the epitaxial growth of nanostructures onto either (001)-oriented $SrTiO_3$ or (001) pseudo-cubic-oriented $DyScO_3$ single-crystal substrates. The morphology of the nanostructures can be controlled by the miscut of the substrate. Synchrotron x-ray scattering observations at controlled temperatures and oxygen partial pressures reveal that the delta- Bi_2O_3 nanostructures are coherently strained to the substrates at room temperature, but have an unexpected superstructure. Annealing the nanostructures at 600°C causes gradual conversion of the (001)-oriented delta phase to an unidentified strain-relaxed phase. Recent experiments have shown that the delta phase can also be stabilized by the growth of epitaxial thin films on (111) Y_2O_3 -stabilized ZrO_2 and (0001) alpha- Al_2O_3 . Future work will combine the structural characterization of thin films with *in situ* electrical measurements to determine the source of the observed superstructure and give insight into the origin of the high ionic conductivity of delta- Bi_2O_3 . This work will contribute to the fundamental understanding of the origin of superionic conductivity in oxide materials. ²Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208 ³Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL 60439